



#### Our offerings at a glance:

#### WinMOD Products

- System Software
- System Configurations
- Add-ons
- Assistances
- OCA Libraries

#### System Training

• Customized training for the WinMOD System Software, as well as the WinMOD Configurations needed for the coupling to your automation system.

#### Start Ups for the System Implementation

- Project Counseling
- Project Monitoring
- WinMOD Libraries
- Work Flow Optimization/Assistance

#### WinMOD Libraries

- Company-specific Libraries
- Technology-specific Libraries

... and more than 10 years worth of experience in Virtual Commissioning.

#### Your way to us



Mewes & Partner GmbH Neuendorfstr. 15 16761 Hennigsdorf

Tel.: + 49(0)3302 2097-0 Fax: + 49(0)3302 2097-111

www.winmod.de winmod@mewes-partner.de **Center for Automation Real-Time Simulation**  **Center for Automation** 

Simulation

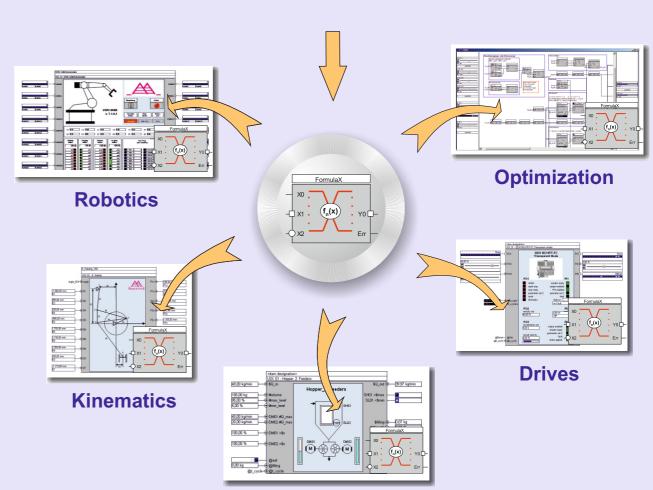
**Real-Time** 

# WinMOD®

Fomula # Reststrecke s rest := ABS

# Breasberei s breas :=

# in Breasber in\_s\_breas :=


{ Der Konstan von +/- der

Der Konstan der aktuell 

OK

## **FormulaX**

 $s(t) = \frac{1}{2}a_0(t-t_1)^2 + v_1(t-t_1) + s_1 \ k(T) = k_0 \exp\left(-\frac{E_A}{RT}\right)_{M_{eff}} =$  $F = m \cdot a \qquad y = \begin{cases} y_p, x_a - x_s > e, \\ y_n, x_a - x_s < e, \\ a = m \end{cases}$  $\frac{s}{t} \quad f(x) = \begin{cases} -x, x < 0\\ x + 1, x \ge 0 \end{cases} \quad \rho_K =$  $= \frac{F_{G1} \cdot \rho_2 - F_{G2} \cdot \rho_1}{F_{G1} - F_{G2}} p = \frac{\Delta W}{\Lambda_*} b = \min(b_1, b_2, ..., b_n)$  $= c_A^0 \frac{k_1}{k_1 + k_2} \left( \frac{k_2}{k_1} - e^{-(k_1 + k_2)t} \right) \qquad Q = \lambda A \frac{T_1 - T_2}{\delta} t \qquad \beta = \arccos(\frac{a^2 + c^2 - b^2}{2ac}) \quad c_A = c_A^0 \frac{k_1}{k_1} + \frac{c_A^2 - b^2}{2ac} = \frac{1}{2} C_A + \frac{1}{2}$  $((A \leftrightarrow B) \land \neg C \quad p = \rho \cdot g \cdot h + p_0 \quad R = \frac{U}{I} \quad C = A \leftrightarrow B$  $b_n$ )  $P_{A,max} = m(a + g(\mu' \cdot \cos \alpha + \sin \alpha))v$   $x_{1,2} = \frac{p}{2} \pm \frac{p^2}{2} - q \ b = \min(a + g(\mu' \cdot \cos \alpha + \sin \alpha))v$  $= v_0(t - t_1) + s_1$   $c = \sqrt{d^2 + (a + b)^2 - 2d(a + b)\cos\beta}$   $C = A \wedge \neg B \ s(t) = v_0(t - t_1) + s_1$  $s(t) = \frac{1}{2}a_0(t - t_1)^2 + v_1(t - t_1) + s_1 k(T) = k$  $F = m \cdot a \quad y = \begin{cases} y_p, x_a - x_s > e, \\ y_n, x_a - x_s < e, \\ a = \max(a) \end{cases}$  $= \frac{s}{t} \quad f(x) = \begin{cases} -x, x < 0 \\ x + 1, x \ge 0 \end{cases} \quad \rho_K =$  $\frac{F_{1} + P_{2}}{F_{G1} - F_{G2}} \frac{F_{G2}}{P} = \frac{\Delta W}{h} b = \min(b_{1}, b_{2}, \dots, b_{n}) v = \frac{3}{t}$  $-e^{-(k_1+k_2)t}$ )  $Q = \lambda A \frac{T_1 - T_2}{\delta} t$   $\beta = \arccos(\frac{a^2 + c^2 - b^2}{2})$   $c_A = c_A^0 \frac{1}{4} \frac$  $P \land \neg Q \rightarrow ((A \leftrightarrow B) \land \neg C \quad p = p \cdot g \cdot h + p_0 \quad R = C = A \leftrightarrow B$  $n(a + g(\mu' \cdot \cos \alpha + \sin \alpha))v \quad x_{1,2} = \frac{p}{2} \pm \left| \frac{p^2}{2} - q \right| b = \min(b_1, b_2)$  $C = A \wedge \neg B \ s(t) = v_0(t - t_1) + s_1$   $c = \sqrt{d^2 + (a + b)^2 - 2d(a + b)\cos \beta}$ 





#### **Process**

| $\boxed{\frac{1}{2}\sum_{m}^{m}M_{z}^{2}\cdot\Delta t_{z}} s(t) = \frac{1}{2}a_{0}(t-t_{1})^{2}$ | $ \begin{array}{l} + v_1(t-t_1) + s_1 \ k(T) = k_0 \exp\left(-\frac{E_A}{RT}\right)_{M_{eff}} = \sqrt{\frac{1}{2}\sum_{x=1}^m M_x^2 \cdot \Delta t_x} \ s(t) = \frac{1}{2}a_0(t-t_1)^2 + v_1(t-t_1)^2 + v_2(t-t_1)^2 + v_2(t-t_2)^2 + v_2(t-t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F_02 - (FormulaX)                                                                                | 0, else $v = \frac{s}{r} f(x) = \begin{cases} -x, x < 0 \\ 0, e \end{cases} = \frac{F_{G1} \cdot \rho_2 - F_{G2} \cdot \rho_1}{0} $ AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| puts View Content Licenses Position Lay                                                          | $(b_1, b_2, \dots, b_n)$ $t \to \infty$ $(x + 1, x \ge 0 + k$ $F_{G1} - F_{G2}$ $P = \frac{\Delta w}{\Delta t}$ $b = \min(b_1, b_2, \dots, b_n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e<br>S(s_ist - s_soll );                                                                         | $\frac{a^2 + c^2 - b^2}{2ac})  c_A = c_A^0 \frac{k_1}{k_1 + k_2} \left(\frac{k_2}{k_1} - e^{-(k_1 + k_2)t}\right) \qquad Q = \lambda A \frac{T_1 - T_2}{\delta} t \qquad \beta = \arccos(\frac{a^2 + c^2}{2ac}) \frac{a^2 + c^2}{\delta} t = \frac{1}{\delta} \frac{a^2 + c^2}{\delta} t = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ch<br>ABS(1/2 * SQR(v_act))/<br>ABS(v_act * t_cycle)<br>- x_breas;                               | $ \begin{array}{c} \leftrightarrow B \\ p \\ \pm \end{array} \begin{bmatrix} E = P \land \neg Q \rightarrow ((A \leftrightarrow B) \land \neg C  p = \rho \cdot g \cdot h + p_0  R = \frac{U}{I}  C = A \leftrightarrow B \\ p \\ \pm \end{array} \begin{bmatrix} p^2 \\ 2 \pm \end{array} \begin{bmatrix} p^2 \\ -q  b = \min(b_1, b_2, \dots, b_n)  P_{A,max} = m(a + g(\mu' \cdot \cos \alpha + \sin \alpha))\nu  x_{1,2} = \frac{p}{2} \pm \end{bmatrix} \begin{bmatrix} p \\ p \\ \pm \end{array} \begin{bmatrix} p \\ 2 \end{bmatrix} \begin{bmatrix} p^2 \\ p \\ p \end{bmatrix} \begin{bmatrix} p^2 \\ p \\ p \\ p \end{bmatrix} \begin{bmatrix} p \\ p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| reich<br>* (s_brems > s_rest);                                                                   | $C = A \wedge \neg B  s(t) = v_0(t - t_1) + s_1  c = \sqrt{d^2 + (a + b)^2 - 2d(a + b)\cos\beta} \qquad C = A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ntfahrbereich ungibt den Bre<br>r Strecke, die in einem Zykl                                     | $ \begin{array}{l} \sum\limits_{a=1}^{m} (t-t_1) + s_1 \ k(T) = k_0 \exp\left(-\frac{E_A}{RT}\right)_{M_{eff}} = \int \\ \sum\limits_{a=1}^{m} M_2^2 \cdot \Delta t_2 \ s(t) = \frac{1}{2} a_0 (t-t_1)^2 + v_1 (t-t_1)^2 + v_2 (t-t_1)^2 + v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ntfahrbereich muss also dyna:<br>len Geschwindigkeit berechne                                    | $ \begin{array}{c} x_a - x_s > e, \\ x_e - x_e < e, \\ a = \max(a_1, a_2, \dots a_n) \end{array} \\ \begin{array}{c} M_{eff} = \\ \sum_{z=1}^{2} \sum_{z=1}^{2} M_z^2 \cdot \Delta t_z \\ F = m \cdot a \\ y = y_e, x_e - x_e \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,                                                                                                | 0, else $y = \frac{s}{f(x)} - \int -x, x < 0$ $y = \frac{F_{G1}, \rho_2 - F_{G2}, \rho_1}{0, e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L.: 1, C.: 1<br>Edit Formula                                                                     | $(b_1, b_2, \dots, b_n)$ $v = t$ $f(x) = (x + 1, x \ge 0)$ $P_K = F_{G1} - F_{G2}$ $P = \frac{\Delta W}{\Delta t}$ $b = \min(b_1, b_2, \dots, b_n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Abbrechen Demeinnen Hife                                                                         | $\frac{t^2 + c^2 - b^2}{2ac})  c_A = c_A^0 \frac{k_1}{k_1 + k_2} \left( \frac{k_2}{k_1} - e^{-(k_1 + k_2)t} \right) \qquad Q = \lambda A \frac{T_1 - T_2}{\delta} t \qquad \beta = \arccos(\frac{a^2 + c^2}{2ac}) dt = \frac{1}{2} \frac{1}{\delta} dt \qquad \beta = \arccos(\frac{a^2 + c^2}{2ac}) dt = \frac{1}{\delta} \frac{1}{\delta} dt = \frac{1}{\delta} \frac$ |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

 $E = P \land \neg Q \to ((A \leftrightarrow B) \land \neg C \quad p = \rho \cdot g \cdot h + p_0 \quad R = \frac{U}{I} \quad C = A \leftrightarrow B$ 

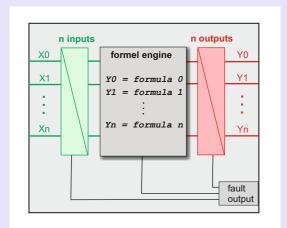
 $\left|\frac{p^2}{2} - q\right| b = \min(b_1, b_2, ..., b_n) P_{A,max} = m(a + g(\mu' \cdot \cos \alpha + \sin \alpha))v x_{1,2} = \frac{p}{2} \pm \left|\frac{p}{2}\right| \frac{p}{2}$ 

 $A \wedge \neg B \quad s(t) = v_0(t - t_1) + s_1 \quad c = \sqrt{d^2 + (a + b)^2 - 2d(a + b)\cos^2}$ 





#### Engineering with WinMOD FormulaX



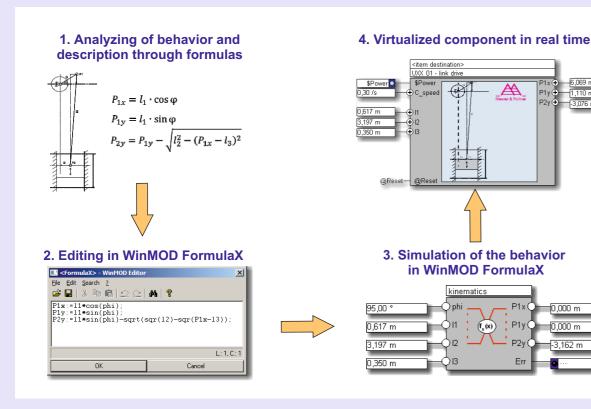

### **Use of WinMOD FormulaX**

#### What is WinMOD FormulaX?

WinMOD FormulaX is an Add-on for the realization of complex mathematical and physical formulas in the WinMOD System Software.

WinMOD FormulaX simplifies the engineering and optimizes the performance by the utilization of:

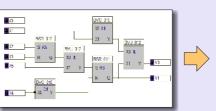


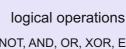

- · complex formulas with analog and binary operations
- compact notation in a WinMOD FormulaX element
- · clearly structured display of complex formula systems

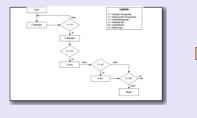
The number of formulas and outputs in the runtime and editing mode is subject to the licensing.

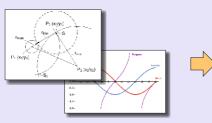
WinMOD FormulaX

#### The Engineering with WinMOD FormulaX


The behavior to be simulated is analyzed and relations of analog and binary state variables and process functions are described by formulas. The formula style corresponds with the general known rules of formula notations. Formulas can be chosen easily from collections of mathematical formulas and transfered to WinMOD.





#### What is the Benefit of WinMOD FormulaX?


- extension of the WinMOD System Platform for the utilization of symbolic formula language
- higher simulation depth
- creation of customized libraries with WinMOD FormulaX
- integration of WinMOD FormulaX into the well-known WinMOD Components

#### Functions of WinMOD FormulaX





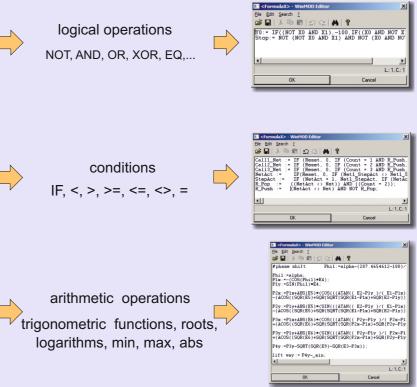




...and WinMOD specific: Identifier conversion, system variables, comments

#### OCA Libraries with WinMOD FormulaX

Basic libraries for WinMOD FormulaX developed by Mewes & Partner are provided free of charge for users.


Outlook on further development of WinMOD FormulaX libraries:

- libraries for physical formulas
- libraries for mechanical modeling
- libraries for motion mathematics
- libraries for pipe systems

#### Licensed Libraries with WinMOD FormulaX

On request, Mewes & Partner can develop costumer-specific libraries, which can be protected by WinMOD content licensing.



